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1. INTRODUCTION

Supported by the Spacecraft Control Branch of NASA Langley Research Center
under the Spacecraft Control Laboratory Experiment (SCOLE) program, the Con-
trol Research Corporation continued the investigation into the control design
challenges of large space systems and Spacecraft Control Laboratory Experi-
ment. This study concentrated on the second stage of a two-stage approach to
active control of the flexible orbital configuration of SCOLE. The principal
objective was to investigate if the structural vibrations excited by time-
optimal line-of-sight pointing slew maneuvers of the bang-bang type could be
quickly suppressed via “"modal-dashpot™ design of velocity output feedback
control.

Structural vibrations in future large space systems such as space anten-
nas, space platform, space station, or of deployed flexible payloads attached
to the space Shuttle orbiter, and their interaction with on board controllers
have become a major concern in the design and operation of such control sys-
tems as, say, for pointing and stabilization. The natural vibration frequencies
of such systems are unconventionally low (tenths of 1 Hz in many cases) and
closely spaced, many of which lie inside or nearby the bandwith of various
traditional (rigid-body) control systems. In the past few years, many
approaches were proposed for designing advanced control systems that would
suppress vibrations in large flexible space structures, and various in-house
laboratory experiments were also conducted, each being specifically set up for
demonstrating some particular design techniques of interest. 1In 1983, the
Spacecraft Control Branch at NASA Langley Research Center initiated the Space-—
‘craft Control Laboratory Experiment (SCOLE) program and the NASA/IEEE
Design Challenge [l] to promote direct comparison and realistic test of dif-
ferent approaches to control design against a common open-to-public laboratory
article. As shown in Fig. 1-1, the article was intended to resemble a large
space antenna attached to the Space Shuttle Orbiter by a long flexible mast,
similar to the proposed space flight experiments and various space-based
antenna systems, and to have a truly three-dimensional complex dynamics.

As stated in Ref. [l1], the primary control task of the Experiment is to
rapidly slew or change the line-of-—sight (LOS) of an antenna attached to
the space Shuttle orbiter, and to settle or damp the structural vibrations
ro the degree required for precision pointing of the antenna. The objective is
to minimize the time required to slew and settle, until the antenna line-of-
sight remains within a specified angle.

Research on a practical two-stage approach and some assoclated control
design challenges in the context of SCOLE had been conducted earlier by Lin
{2]-[5}- His initial efforts, also supported by the SCOLE program, were con-
centrated on "Stage 1" while the flexible~body dynamics of the configuration
with a flexible mast beam was being actively developed at the Langley Research
Center.

Among the most commonly held ideas for pointing/retargeting of large flex-—
ible space systems is the following intuitively appealing and rather practical
two~stage approach: (Stage 1) slew the whole structure like a rigid body in a
minimum time under the limited control moments and forces first, and then
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Fig. 1-1 Spacecraft Control Laboratory Experiment (SCOLE)--
the orbital Shuttle-Mast—Antenna configuration.
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(Stage 2) damp out the excited structural vibrations afterwards. Such an
approach undoubtedly will be a very relevant, and realistic as well, to study
with SCOLE.*

To slew a spacecraft for a given angle in a prespecified time, there are
many ways to command the slew actuators on board. The one that is easy to
implement is a bang-bang comntrol. That is, a constant force at its allowable
maximum is applied in one direction half of the time and then in the opposite
direction the other half. Such is the most convenient and common with reac-
tion-jet thrusters, and most spacecraft Including the space Shuttle use thrus-
ters. As the structure considered for future space antennas and optics was
becoming larger and more flexible, structural dynamicists suggested modifying
the constant profile by a sine or versine function so as to smooth the switch-
ing. To explore further in their theorectical and experimental investigations,
control engineers also started to apply Pontryagin's Maximum Principle of the
optimal control theory [6] to develop open~loop profiles that would "minimize"
excitation of the first few vibration modes.** Including more than a few
modes generally will make it almost impossible, even with the aid of powerful
digital computers, to carry out the complicated computations necessary for
applying the optimal control theory. To implement any such slew profile other
than the bang-bang type will also require that the thrusters be at least
“"throttleable” in fine steps, which is still beyond the current state of the
art.

To slew SCOLE for the desired 20° under the specified limits on control
moments and forces in a minimum time, instead of some arbitrarily fixed time,
application of the well-known time-optimal bang-bang control theory [6]-[7]
was considered the most appropriate for the Stage-1 design. The theory, how-
ever, is not directly applicable to SCOLE: due to the asymmetrical configura-
tion and the moving coordinate frame that is fixed on the Shuttle body axes,
all axes are tightly coupled through nomzero products of imertia as well as
through different moments of inertia. After examining the major assump-
tions in the theory, Lin [2]-[3] was able to develop a useful practical design
technique for time-minimized single-axis bang~bang slew maneauvers. This in-
cludes the possible "bang—pause—bang control” when some judicious slew rate
limits are imposed on the slew design.

Analytical and numerical studies were then conducted on the implicit tran-
scendental nonlinear expression initially provided by NASA Langley Research
Center for SCOLE's line-of-sight error. A designer's choice of allowable in-
itial alignment to take advantage of the low moment of inertia in the roll, as
suggested by Taylor ([l], was determined directly analytically. The slew
angles to achieve the desired LOS pointing were thus determined. [4]-[5]

A computer program for SCOLE's complete 3-axis rigid-body dynamics was
developed and used to simulate numerically the application of various time-

* The Space Shuttle, while in orbit, is under the single-axis "phase-plane”
rigid-body attitude control of "Digital Auto-Pilot” (DAP). If the two-—stage
apprvach is applicable, then the current DAP can be used conveniently with
various proposed flexible~structure flight experiments in space without having
to make a major specific change in operation or design to suit each different

experiment setup.
*% Usually all but 2 to 3 modes of the structure were ignored.
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minimized bang-bang type attitude slew maneuvers. The numerical simulation
test results indicated that the single-axis bang-bang or bang-pause-bang slew
maneuvers work fairly well for pointing the LOS of SCOLE under the specified
conditions. In particular, applying a maximum allowable control moment (i.e.,
10,000 1b-ft) on the Shuttle and a maximum allowable control force (i.e., 800
1b) on the Reflector, plus imposing 5 deg/sec slew rate limit on the design,
yields the best pointing accuracy (0.097°) with minimized slew time (3.733
sec) and least sensitivity to nonzero products of imertia. Such is a best
design for LOS pointing slew maneuver for the SCOLE configuration so far as

the Stage 1 is concerned.[5]

For designing vibration control systems (the Stage 2), a standard choice
would be to apply the modern control and estimation theory, namely, the
linear-quadratic-Gaussian (LQG) state-feedback control technique. The LQG
technique has been well accepted because of its success in various other
applications. Control spillover and observation spillover, however, have
surfaced as major roadblocks to successful application of such a state-of-the-
art state-feedback design technique to control vibrations in large flexible
space structures. Current spacecraft and many other engineering systems on
which the LQG technique has been very sucessful are of the rigid-body type
that do not have as many closely spaced low-frequency vibration modes as
there are in a future large flexible space system. Earlier, Balas [8] showed
by an example and Herrick [9] followed by a hardware experiment that, because
of control and observation spillover, even a simple flexible beam, which was
initially stable in the open loop, became unstable when the "modern modal

control” loops were closed.

On the other hand, dynamic properties of large flexible space structures
can be enhanced by active augmentation of modal damping and stiffness through
proper output-feedback control [10]-[24]. ©Lin [20]-[23] showed analytically
that an appropriate output feedback control system, particularly when it is of
the type of "modal dashpots” and/or "modal springs” [21], can even ensure
full-order closed-loop asymptotic stability of a very general class of
lightly damped large flexible space structures while improving their dynamic
characteristics.

For Stage-2 design to damp the excited vibrations in the SCOLE configura-
tion, one can consider using a modal-dashpot type of output feedback control
system first. One may then consider using a modal-dashpot augmented LQG
optimal state feedback control system, if the LOS stabilization performance is
not enough to satisfy the specified stringent accuracy requirements.

Before proceeding to designing a vibration control system for SCOLE, many
technical issues need to be addressed. For example, one needs to characterize
SCOLE's vibration modes with respect to (i) the excitation by the rapid slew
maneuvers, (ii) their contribution to the vibration (jittering) of SCOLE's line
of sight, and '(iii) the control authority of the control actuators. Which
modes need to be controlled directly? Which modes only need some additional
damping? Which are more likely to cause serious control spillover if not in-
cluded as "modeled modes”? Those are among many technical questions one gen-—
erally should look into before starting out a meaningful design for SCOLE's
vibration control system.
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2. MATHEMATICAL MODEL OF THE ORBITAL SCOLE CONFIGURATION

To assist our quantitative assessments of the vibratory impact of rapid
bang~bang slew maneuvers on the flexible SCOLE configuration and the perfor-
mance of proposed vibration control designs, we have developed a computer pro-
gram to simulate various vibratory responses of the configuration. The com-
puter simulation was based mainly on the modal data set D3D585 provided by
Dr. Suresh M. Joshi of NASA Langley Research Center as the flexible-body dyn-
amics, and the nonlinear LOS error expression formulated by Mr. Larry Taylor
[1]. We extended a portion of the expression by including a few more terms to
take a better account of the effect of bending in the mast.

2.0 Outline of the Orbital Shuttle-Mast-Antenna Configuration

As shown in Fig. 1-1, the configuration of the SCOLE represents a large
antenna attached to the Space Shuttle Orbiter by a flexible beam as the Mast.
The configuration was chosen for its similarity to proposed space flight exper-
iments and various space antenna systems.

The dynamics of the SCOLE configuration are described [l1] by a distributed-
parameter beam equations with rigid bodies in the three-dimensional space, each
having mass and inertia at either end. One body represents the space Shuttle
Orbiter, having the mass, inertia, and dimensions typical of the real one. The
other body is a large antenna reflector. The equations of motion for the com-
plete configuration are formed by incorporating the three-dimensional rigid-
body equations into the partial differential equations of beam bending and tor-
sion. The flexible mast is treated as a standard slender beam. The boundary
conditions at the ends of the beam contain the forces and moments applied to
the rigid Shuttle and reflector bodies. The mast is not attached to the
magss center of the reflector, but rather significantly away in both x and y
directions. The nonlinear kinematics of the two sizable bodies and the offset
attachment of the reflector couple the three otherwise uncoupled beam equa-
tions. The reader is referred to Taylor and Balakrishnan's paper [1] for the
details. The rigid-body part of the mathematical model was used by Lin ear-
lier in his studies on the LOS pointing (i.e., the Stage 1) of the configuration.
The studies on vibration control reported here were based on a most recent
version of the flexible~body part available; see Section 2.1 below.

The line-of-sight (LOS) error of the SCOLE configuration is a highly nonli-
near implicit expression. The line of sight is defined by a ray emited from
the feed on the Shuttle which is reflected at the center of the Reflector. It
is affected by the pointing error of the Shuttle, the offset attachment of the
Reflector, and the misalignment due to the deflection and torsion of the Mast.
The reader is again referred to Ref. [1] for the original formulation of the
LOS error. An equivalent expression having a simple modification, which is
iore convenient than the original for both efficient numerical computations
.4 din-depth analytical investigations, was used by Lin in his earlier rigid-
body studies [3]-[5]. For the current flexible~body studies, the nonlinear LOS
error expression also needs some more terms in order to have a better
accounting for the bending of the mast beam; see Section 2.2 below.

5 ORIGINAL' PAGE 13
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2.1 Flexible-Body Dynamics

The bending and torsion characteristics of the SCOLE configuration were
originally formulated in partial differential equations by Taylor and Balak-
rishnan [1}. Robertson {25] derived the corresponding equations of free motion
taking into account the kinematic coupling resulted (i) from the offset attach-
ment of the Reflector to the Mast and (ii) from the nonzero products of
inertia of both the Shuttle and the Reflector. He then solved the equations in
terms of trigonometric and hyperbolic functions and computed a set of natural
frequencies and mode shapes. Such results are not readlily useful for control

studies.

To facilitate the control analysis and design for SCOLE, Joshi [26] first
derived a state-space model from Robertson's results; the data set was named
"BMDT3D". Later, he improved Robertson's results, and also derived another
state-space model, named "D3D585". OQur computer simulation program was in-
itially based on the data set BMDT3D, which contained only the first five flex~
ible~body vibration modes. It was then updated when Dr. Joshi furnished us
with the set D3D585 later.

The set D3D585 provides modal data in the state-space (A,B,C) form. It
contains only the first 10 flexible-body modes but no rigid-body modes nor any
nonlinear rigid-body dynamics. This set was quite appropriate for our purpose
of assessing the vibratory impact on SCOLE. We found it more effecient and
convenient, however, to compute the time transition of the states using the
second-order modal equations directly, because of the decoupled nature of the
former, than to do so using the first—order state equations. We thus con-
verted the furnished data back to the following standard modal form:

m
r'fi + Giﬁi + ogny = z &{kauk i=1,...,N (2~1)
k=1
n
yj = Z(cvj¢ini + CDj¢ini) j = 1)””£ (2-2)
i=1
where § = 2;1wi, o, = “12 (2-3)

are, respectively, the damping and stiffness coefficients of the wunit-mass
linear oscillator representing the ith vibration mode; wj; and ¢; denote the
natural frequency and mode shape, respectively, of mode i; ¢{ denotes the in-
herent damping ratio of mode i, which had been assumed to be 0.3% for all
flexible-body modes of SCOLE [l1}. ny and njy denote the coordinate and velo-
city, respctively of the ith mode.

The kth force (torque) input is denoted by uyg, with column vector bpi rep-
resenting the corresponding actuator influences on SCOLE. The jth measurement
output is denoted by Y3 with row vectors Cy; and Cpj representing, respec-
tively, the velocity and displacement sensor influences.

Putting (2-1) and (2-2) into a matrix form, we get
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n+ AR+ In= ¢TBFu (2-4)
y = Cvth'] + CDOn (2-5)
where
A = diag [2;1(»1], I = diag[miz:l (2-6)
¢ = [¢1’ seey ¢n]) BF = [bFl’ soey me] (2_7)
Cyy 1 Cpy |
C. = : C. = :
v Cys D" |
lr n | [ ] [v,]
n = : u = ° y = : (2-8)
N umJ Yy

In accordance with Robertson's formulation, we also assume that the bend-
ing and torsion in SCOLE are referred to the coordinate system defined on its
initial undeformed configuration. Thus, before any deformation, the center of
mass of the Shuttle is at the origin of the coordinates; the roll, pitch, and
yaw axes (i.e., body x, y, z axes) of the Shuttle, align with the x, y, z coor-
dinate axes* respectively; and, in particular, the straight mast beam coincides
with the z coordinate axis. Note that, since the flexible mast was not tre-
ated as a cantilevered beam in Robertson's derivation, not only the mast may
not be tangential to the z coordinate axis, but the center of mass of the
Shuttle also may not remain at the origin, nor may the Shuttle body axes
remain parallel to the coordinate axes, when a significant deformation of the
mast occurs. The line of sight of the SCOLE configuration will thereby be sig-
nificantly affected.

2.2 Line-of-Sight Error Expression with More Bending Terms

In order that the jittering of the line of sight (LOS) due to excited vibra-
tions can be more accurately evaluated, we used almost the same nonlinear
expression for the line-of-sight (LOS) error of the SCOLE configuration as ori-
ginally given in Ref. [l}. Unlike the orginal, however, our improved version
also takes into account the z-axis dislocation of the Reflector due to
bending of the mast, and like the one Lin used earlier [4]-[5] the LOS vector
R, 05 is not normalized. Note that the LOS error expression could be expanded
in a Taylor series and a linearized version could be obtained by taking the
first-order terms. A linearized version, though useful in 1linear—-quadratic

* Robertson's y and z axes are opposite in sign to those defined by Taylor for
SCuLE. We continue to adopt Taylor's definition for consistency with Lin's
earlier studies [2]-[5] on the Stage 1.
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optimal control designs, is not appropriate for our current use since the
excited vibrations are sufficiently large in magnitude and the second- and
higher-order terms of the series expansion may not be negligible at all.

The location of the center of the Reflector, represented by Rg ,is defined
by the location of the joint where the Reflector is attached to the Mast; see
Figure 2-2. Denote by Ry the location of the joint relative to the center of
the Reflector, and by Ry the location of the same point (also the tip of the
mast) with respect to the center of the Shuttle. Then the vector RR is given

by

= Y -
RR =R, -T; T, R, (2-9)
[-18.75
32.5
where RJ = L 0 (2-10)

The vector Ry is constant in magnitude because of the rigid reflector, but its
orientation with respect to the Shuttle is affected by the deflection at
the tip J. The product T1TT4 of coordinate transformations Tp and T4 is to
take care of the angular change. As in Ref. 1, T; denotes a direction-cosine
transformation from the Shuttle to the Earth (inertial) coordinates, and T4 one
from the Reflector to the Earth coordinates.

A reasonable approximation for the tip location is given by

[ Bendy

3 Bendy _
Ry = (2-11)

-/ 130% - Bendyx? —-Bendy?

where Bendy = u o - up Bend, = ugg T YgR

uxs and uyg denote the deflections of the mast at the Shuttle end in the
xz and yz planes, respectively; uyr and uyR are the corresponding deflections
at the Reflector end.

Eqs. (2-9)-(2-11) constitute our additional modification to the LOS error
expression. Note that the vector Ry originally given as (18.75, -32.5, -130) in
Ref. [1] corresponds to the undeformed case. To see it, assume that ther

are no deflections at all. Then Bendy and Bendy are both zero, and T4 is
equal to Ty. Therefore, Ry = (0, 0, 130). Consequently, Rg = Rr -Ry = (18.75,
=32.5, 130).

In the analytical studies on the LOS error of SCOLE [4]-[5], we found it

more convenient not to normalize the LOS vector Rjgg first, although the res-
ulting error expression is the same since division by its norm is still made
later at the end. The LOS error with such a trivial modification is given by

eros = * sin [ ||y x T1Rros|| / | [Rpos] | :I (2-12)

s



Tig. 2-2 Line-of-sight vectors RR and RLOS’ and Mast tip position vector &I‘
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with the unnormalized LOS vector being defined as

R

.05 = RF'= RR “Rp —2[(RR _RF)'RA]RA (2-13)

Where as defined in [1], Ry is the vector representing the feed location (3.75,
0, 0). Rp is a unit vector in the direction of the Reflection axis in the Shut-
tle body coordinates, i.e.,

T. (O
1

For the target direction specified in [1] as Dy = (0, 0, 1), Expression
(2-12) reduces to

"‘1 2 2
®Los = * sin [ﬁln Riog) + (Tppp Rpps) / ”RLOS”:] (2-14)

where Tj,1 and Tjyp denote respectively the first and the second rows of
matrix Tj.
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3. VIBRATORY RESPONSES TO BANG-BANG TYPE RAPID SLEW MANEUVERS

Several LOS pointing slew maneuvers of the bang-bang type were applied to
our computer simulation of the SCOLE flexible-body dynamics. The resulting
responses range from excessive to minimal, depending on the magnitude of the
applied force at the Reflector. Note, however, that all these slew maneuvers
were designed to provide minimized slew time under the increasingly tight limit
imposed on the respective applied force.

The slew maneuver that excited the most violent vibrations in SCOLE was
chosen for studying the control design and for generating in-depth insights
into the vibration control challenges. On the other hand, the least violent
one deserves further exploration in the future, since it may potentially
require a smaller total time for both slew and stabilization.

In assessing the impact of structural vibrations on SCOLE, we view the
slew maneuvers as time-dependent disturbances instead, and only the vibra-
tory portion of the time~domain responses are of real interest. Therefore, it
is reasonable that we concentrate only on the flexible-body and temporarily
ignore any rigid-body dynamics in this study. This assumption is equivalent to
the absence of rigid-body dynamics. It is also reasonable to assume that,
before being subject to such disturbances, SCOLE was initially at rest and had
no deformation nor LOS error. The former assumption is equivalent to setting
to zero the initial conditions on the normal coordinates and velocities of all
modes, and the latter equivalent to aligning the undeformed SCOLE configura-
tion with the attitude (¢.,6,,¥;) that corresponds to zero LOS error. Such
roll-pitch-yaw Euler angles, calculated and used by Lin earlier [4]-[5], are
listed below for reference:

¢'1 = -14.03624347°; 6, = -6.38707294°% b = 0°.

3.1 Excitation by the Rapid Time-Minimized Bang-Pause-Bang Slew Maneuver

We first examined, through numerical simulation, the SCOLE flexible-body
dynamics under the excitation of the rapid time-minimized roll-axis bang-
pause-bang (BPB) slew maneuver that was considered a best candidate for
pointing the line of sight of the SCOLE as a rigid body [4]-[5]. Among many
other single-axis LOS pointing slew maneuvers of the bang-bang type previously
studied, this BPB maneuver was judged to be the best compromise in terms LOS
pointing accuracy achievable, slew time required, and performance robust-
ness to nonzero products of inertia. It was designed to slew the SCOLE confi-
guration about the negative roll (i.e., -x) axis for about 20° to correct the
initial 20° LOS error specified in [l]. This slew maneuver requires that the
maximum allowable moment (10,000 1b-ft) be applied to the Shuttle about the
negative roll axis and simultaneously the maximum allowable force (800 1b) at
the Reflector center along the negative y axis, both for only 0.867 sec.;
then, after a long pause of 3.158 sec., these maximum moment and force be
applied again for only 0.867 sec. but in the opposite directions (i.e., positive
roll and y axes, respectively).

Such a BPB slew maneuver was applied to our computer simulation of the
SCOLE flexible~body dynamics. The simulation results are summarized by the
plots in Fig. 3-la, which show that such a maneuever would cause excessive
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vibrations in SCOLE! Observe that: the line of sight vibrated with error
between 89.8° (or 133.3° if not taking on the principal value of the arcsine in
Expression (2~14)) and 14.7% the tip of the mast vibrated in the yz-plane
between +114 ft and -113 ft.

Fig. 3-1b show the deviations in Euler attitude angles of the Shuttle (S)
and the Reflector (R) from their "nominal” alignment of zero LOS error. These
deviations correspond to the bending slopes and the torsion at the respective
end of the mast. Observe that the Shuttle rolled to the right and the left
between +17.16° and -17.06° while the Reflector rolled to the left and right
between -86.96° and +88.35°. There were virtually no pitch and yaw motions of
the Shuttle, but the Reflector pitched between -10.63° and 8.75° and yawed
betweeen —-32.27° and +27.97°.

In general, some significant excitation of the vibration modes of a flexi-
ble space system, such as the orbital SCOLE configuration, should be expected
when large moments and forces were used to their limits in a bang-bang manner
to minimize the slew time. The appalling magnitude of the vibratory impact,
however, was indeed a surprise.

Such excessive vibrations certainly post serious challenges to the Stage-2
design, i.e., the control design for suppressing such vibrations after the exci-~
tation. Can such large-magnitude vibrations be brought down to some tolerable
level in about the same length of time (say, 5 sec.) as the slew maneuver?
How to design such a fast effective vibration controller? We shall continue
to address such design challenges in Section 4.

3.2 Excitation by Other Rapid Time-Minimized Bang-Bang Slew Maneuvers

Are all slew maneuvers of bang-bang type so terrible to flexible space
systems? Why are the excited vibrations in SCOLE so large in magnitude? Even
when one can design a powerful fast vibration controller capable of damping
out such vibrations, one still cannot stop thinking of these and other puzzling
questions. To investigate further, we conducted the following numerical
experiments on our computer simulation of SCOLE flexible-body dynamics. All
were the same as before, except that a different bang-bang slew maneuver was
applied.

3.2.1 Experiment F10 -- No force on Reflector. First we tried to use
only the 10,000 1b-ft moment on the Shuttle. The same roll-axis bang=-bang
slew maneuver using only such a moment for accomplishing the same 20° pointing
task in the minimum time as was previously designed and evaluated on the rigi-
dized configuration in [4]-[5] was tried. This maneuver requires that the max-
imum moment be applied first about the negative roll axis for 6.307 sec, and
then switched to the opposite directions {(i.e., positive roll axis) for another
6.307 sec. It was truly a bang~bamng (BB) control.

The simulation results, as shown by plots in Fig. 3-2, clearly show that
the vibratory impact was greatly reduced. The LOS error was only 6.25° at
most, and the mast tip vibrated only between +5.06 ft and -5.18 ft.

0f course, the (minimized) slew time is much longer; it is a main reason
why this maneuver has been rejected earlier [4]-~[5] as a Stage 1 design for
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SCOLE. This simulation is useful only when its results are compared with the
foregoing case of using additional 800 1b force on the Reflector: it serves as
an opposite extreme, since no force was applied to the Reflector at all.

By a careful inspection of the time histories of the tip deflection in both
cases (see Figs. 3-1b and 3-2b), we can make the following interesting observa-
tions. While the moment was being applied to the Shuttle about the negative
roll axis without any force on the Reflector, the beam bent backwards and the
Reflector lagged behind*. On the contrary, the addition of the maximum force
on the Reflector reversed the situation, even though the additional force had
exactly the same purpose of rolling the configuration to the same side as the
moment on the Shuttle! The Reflector then became leading instead of lagging.

3.2.2 Experiment F180 —— 80 1b Force on Reflector. The leading of
the Reflector might be responsible for the huge increase in LOS error, as imp-
lied by the above observations. It is therefore reasonable that reducing the
applied force might reduce the lead and hence reduce the LOS error. A second
experiment was thus conducted with an 80 1b maximum force, which is only one
tenth of the original allowable maximum.

A new roll-axis slew maneuver was designed, in the same way as the first
BPB slew maneuver; but only 80 1b, instead of 800 1b, force was to be used in
conjunction with the same 10,000 1b-ft moment to accomplish the same 20° LOS
pointing in a minimized time. It turned out to be a bang-bang maneuver in-
stead, since the slew rate would not reach the imposed 5 deg/sec limit. In
almost the same way as in the case of 800 1b, the slew maneuver requires that
both the moment and the (tighter-limited) force be applied with respect to the
corresponding negative axes for 4.416 sec, and then reversed to the corres-
ponding positive axes for another 4.416 sec, but with no pause in between.

The simulation results, as summaried by plots in Fig. 3-3, confirmed what
we thought. The lead by the Reflector 1s now greatly reduced, and so are
the LOS error and the mast bending, compared to the case of 800 1b (Fig. 3-1).
The LOS error was only 24.7° at the highest peak of its time history; the tip
deflected only between +20.59 ft and -10.83 ft; and the Reflector rolled only
between +15.98° and -8.31°.

These results have clearly shown that the 800 1b force was directly res-
ponsible for the excessive vibrations and the unreasonable LOS error.

Next, compare these results with those of Experiment F10 (Fig. 3-2). A
peak LOS error of 24.7° is fairly large compared to only 6.25° of Experiment
F10; so is a maximum deflection of 20.59 ft compared to omnly 5.18 ft of F10.
Does this mean that no force should be applied to the Reflector at all? No,
we did not think so! Instead, we reasoned that if one could reduce the lead
slightly further, one could further reduce both the LOS error and the tip def-
lection. So a third experiment with a slightly smaller force was performed.

* Note that when a negative moment is applied to the Shuttle, a positive def-
lection indicates the lagging of both the mast tip and the Reflector.

—17-



30.00

)
Lo
[
o
[\’
oo
o
L.[_., .
o
oD
O
|
=
P T T T T ] F180
0.00 2.00 4.00 6.00 8.00 10.00
TIME SEC
o
o
o
=1
X-AXIS
8855090
o
o
o Y-AXIS
(\J AAAAAAAA
=Z
O
— O
(HO
FEPRS
—J
L
ch;
a5
o
o T I T T — F180
.00 2.00 4.00 6.00 8.00 10.00

TIME SEC

Fig. 3-3 Vibratory responses to Rapid Time-minimized Bang-Bang Slew: 80 1b;
a. Line-of-sight error and Mast tip deflection.

_..18__



DEV. DEG

ATTITUDE

DEV. DEG

RTT1TUDE

2.00

ROLL, S
—45-008-0-0R-0—
o
= PITCH, S
O WSOt - TN It bp b NI T
o YAW, S
o B R Lo L RV
Q_
o
(a0}
:|;. T [ 1 T 1 F180
0.00 2.00 4.00 6.00 8.00 10.00
TIME =~ SEC
[am)]
O
O
(g%}
ROLL, R
—4-88-80-80-0-0—
(@n]
O
5. PITCH, R
YAW, R
S S PEIEI DD eI
S(
© | | | | . F180
'0.00 2.00 4.00 6.00 8.00 10.00
TIME SEC

Fig. 3-3 Vibratory

\

responses to Rapid Time-minimized Bang-Bang Slew: 80 1b;

b. Attitude deviations at the Shuttle (S) and the Reflector (R) ends.

-—19-—-



3.2.3 Experiment F125 —-- 25 1b Force on Reflector. Since the Shuttle-
attached SCOLE configuration was chosen because of its similarity to proposed
space flight experiments [27]-[29], we thought it would also be more realistic
to consider a force of about the same level as the vernier RCS thrusters on-
board the Shuttle Orbiter. Since the existing vernier thrusters generate 24 to
24.5 1b thrust each [30], we simply selected 25 1b for the third experiment.

Again a new roll-axis slew maneuver was designed in the same way as
before for accomplishing the same 20° LOS pointing in the minimum time. It
certainly is a bang-bang maneuver, like the case with 80 1b force. This BB
slew maneuver requires that both the 10,000 1b-ft moment and the 25 1b force
be applied with respect to the negative roll and y axes, and then switched to
the positive axes, as before, for 5.479 sec each time.

The results, as shown in Fig. 3-4 by plots, are very pleasing, indeed. The
largest LOS error was less than 0.51°; the tip deflected only between +0.25
and -0.3 ft; and the Reflector rolled only between +0.16° and -0.3° ! All are
one order of magnitude smaller than those from applying no force on the
Reflector! Of course, the time required for completing the 20° slew of the
line-of-sight is also shorter. In summary, for a BB slew maneuver of the
flexible SCOLE configuration, using a force of 25 1lb on the Reflector in
addition to a 10,000 1b-ft moment on the Shuttle is in all aspects supe-
rior to using no additional force there.

The force of 25 1b is simply a rather arbitrary trial value. One could
continue to search for an optimal value that would result in still smaller tip
deflection, but we did not do so because we felt that our original purpose had

already been served very well.

If LOS error were the only concern and time were not so important, then
one should immediately stop studying the use of 800 1b force on the Reflector.
On the other hand, since time is at least equally important for SCOLE, it is
not clear at all that 25 1b might be preferred outright to 800 lb: the mini-
mum time required for the same 20° slew is 10.959 sec for the case of 25 1b
but only 4.892 sec for the case of 800 1lb, that is, more than twice longer.
Moreover, in both cases, some active vibration controllers are still needed to
damp out the excited vibrations; and hence some additional time is required in
order that the required LOS accuracy of 0.02° can be met.

To damp out excessive vibrations, such as excited by the BPB roll-axis
maneuver using both an 800 1lb force and a 10,000 1b-ft moment, can be serious
challenges to the Stage-2 control design. Insight and techniques generated
from dealing with such challeanges certainly will be useful in designing
effective vibration controllers for the case of using a smaller force, such as
25 or 80 1b.
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4. ACTIVE VIBRATION CONTROL FOR SCOLE

4.1 Direct Velocity-QOutput Feedback Control

Let yy denote the velocity-sensor outputs. Then from the system Egs.
(2-4)-(2-5), we have

Yy = Cvtbn (4-1a)
The general form of direct velocity-output feedback control is
u = - Gyy (4-1b)

where G denotes a matrix of constant feedback gains. Substituting (4-1) in
(2-4) results in the following closed-loop system

P4 (s + c‘bTBFGCVo) hn+2In=0 (4-2)

The modal stiffness matrix I of SCOLE flexible~body dynamics is positive
definite, since no zero-frequency rigid modes were included in dataset D3D585.
By applying the classical Kevin-Tait-Chetaev theorem, its extensioms, or Liapu-
nov's second method, one can show (see, e.g. [17]-[23]) that the closed-loop
system (4-2) is:

(i) stable (in the sense of Liapunov) if the augmented damping matrix
(4 +¢TBRGCye) is symmetric and nonnegative definite, and
(ii) asymptotically stable if the augmented damping matrix is positive definite.

When the velocity sensors are, as generally assumed, co~located with the
sensors, i.e., Cy = Bpl, the additional damping matrix (oTBpGCy9) 1s always
nonnegative definite*, whether the gain matrix G is positive or merely non-neg-
ative definite. In other words, direct velocity-output feedback control at
least will never destabilize the system, even when no inherent damping exists

(i.e., 4 = 0).

For most practical cases where there are less actuators than vibration
modes and there are virtually no inherent damping (i.e., A is small and some of
its diagonal elements are virtually zero), the existing theory cannot help det-
ermine whether a closed—-loop system is asymptotically stable or not, though
numerical results can [17].

The theory is not enough to help design the feedback gains, either. Usu-
ally designers simply restrict the gain G to be diagonal matrix, and therefore,
make each co-located pair of actuator and sensor act like no more than a (pas-
sive) dashpot. Having no systematic method to help calculate the required or
desirable values for the feedback gains, some designer even set the diagonal
-lements rather arbitrarily to some trial positive numbers. A practical ques-

* Only in a rare special case, which is rather unrealistic to truly flexible
large space systems, where there are as many independent actuators (and co-
located independent sensors) as there are vibration modes and the influence
matrix By is nonsingular, will a positive definite gain matarix G quarantee
that the product #IBpCy® is also positive definite.
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tion is: how to design the gains so as to add more damping selectively to some
specific modes than others? How not to restrict the resulting design to be
strictly local feedback? How to design the direct velocity-output feedback as
a really multi-variable control system? A systematic design mcethod is needed.

4.2 Concept of Modal Dashpots

The diagonal form of feedback gain matrices spreads the control effort
thin over all the vibration modes. One cannot design the diagonal form for
adding desirable amounts of damping respectively to certain selected vibration
modes. On the other hand, when one wishes to add a certain amount of damping
to each mode, one might consider computing the gain matrix G as the general
solution of the following NxN matrix equation

eTBF G Cyo = A* (4-3)

without restricting it to be diagonal, where A* denotes the matrix of desired
additional modal damping. Expressed in terms of additional damping ratio &y
desired of each mode, the matrix A* may take on the same simple form as Egs.

(2-6), (2-3), i.e.,

A* = diag[ 5’;] (4-ha)
and 8§ = 2w, 1=1, i, N (4-4b)

Note that for a realistic flexible space structure there are much more vibra-
tion modes than there are locations for placing actuators or sensors (i.e.,
N>>% and N>>m). Thus, if one wishes to augment some indeterminate amount of
active damping to all the modes, then one may try to obtain an approximate
solution of Eq.(4-3), such as of the least squared error like the following

¢ = (QTBF)P A (Cvo)P | (4-5)

where af denotes the Moore-Penrose pseudo-inverse. No conditions on the
matrix <DTBF or Cy% need to be satisfied, and the pseudo-inverses can be calcu-
lated numerically using the singular value decomposition [31]-[32].

Solutions of the form (4-5) have three major practical drawbacks. First,
the number N of vibration modes in a realistic flexible structures is enor-
mously large, making it impractical, if not impossible, to calculate the
pseudo-inverses of the extremely large matrices OTBF and Cy¢. Secondly, one
still cannot really focus a specific subset of the modes, since the solution GP
is merely a least-square approximation, with errors spread all over the
modes. Thirdly, also because of approximation errors, the resulting product

T P
¢ BF G CVQ

might not be symmetric, and hence stability might not be guaranteed.
In practice, one needs to concentrate on a relatively small number of

important modes. In many cases, one cannot care less for those modes which
are less important when one cannot even get what is required for suppressing
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the more important ones. Thus, assume that some n modes (n<{<N) are the most
important, and a reduced-order dynamic model is formed by selecting only those
n modes. Call those modes modeled modes and the rest unmodeled modes. Par-
tition the matrices n, @, A, and I accordingly into the modeled (M) and the

unmodeled (U) parts, i.e.,

n, |
M
n = “UJ ® = [o,8;] A = black-diag[Ay,8;] I = black-diag[zy,I;]  (4-6)

Then, the closed-loop equation for the reduced—order model is

o T T . = -
iy + (B + 8BLGC o) A + Iyny =0 (4-7)
Now, let a reduced matrix Aﬁ be given that corresponds to the desired

additional damping for the n modeled modes. Then the design is reduced to
solving the following much smaller nxn matrix equation, instead of the NxN Eq.
(4-3), for the gain matrix G:

T = A¥ -

OMBF G CV M = By (4-8)
As before, a solution in the same general form as (4-5) can be obtained numer-
ically by computing the pseudo-inverses of influence matrices (OMTBF) and
(Cy%y). It is still an approximate solution unless some rank conditions are
satisfied by the influence matrices. ’

0f the particular interest is when the control influence matrix (OMTBF)
has the full row ramk and the observation influence matrix (Cy%y) has the
full column rank. In other words,

T
rank(@MB

) row(@ﬁBF) = n (4-9a)

rank(CV¢ = column(CVOM) =n (4-9b)

M’
Such a special case requires that n{% and n{m, i.e., the number of modeled
modes do not exceed both the number of actuators and the number of sensors to
be used in the feedback control. Under the full-rank conditions (4-9), the
pseudo-inverses are also generalized inverses. That is,

To P 2 (6Tp YR = ¢ T
(thBF) (<I>MBF) right generalized inverse of OMBF
-1
- (aTn T |/oT To £T _
(stBF) [(QMBF)(G;MBF)] (4-10)
(C.¢ )P = (C,¢ )L = left generalized inverse of C_9¢
VM VM V'M

- T ¢ -1 T
= (CV¢M) (Cyy) (Cyoy) (4-11)
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The gain matrix G* computed therewith solves Eq. (4-8) exactlyt. The closed-
form expression is given by

* T R % L : _
G" = (0,BL)" 4, (Cyo) (4-12)

Consequently, the reduced-order closed-loop system equation (4-7) thereby
simplifies to

o x_ .
fy + (Ay + By) Ay + Iyny =0 (4-13)
*
The desired damping Ay is thus added  to the reduced-order model exactly as

specified. For stability, the matrix Ay of additional damping only needs to be
nonnegative definite; it need not be diagonal.

When Ag is chosen to be a diagonal matrix, as it is often convenient and
reasonable to do in practice, the resulting velocity-output feedback control
will perform 1like a separate “"dashpot™ attached to each mode of the
reduced-order model. Specifically, let

* %*
AY = dtag [sm] (4-14)

Then (4-13) can be rewritten in the component form like (2-1) as follows:

s + (g * Sy) Fiyg + ofiy nyg = O (4-15)
where fy; denotes the normal coordinate of the ith modeled mode. Eq. (4-15)
obviously means that the ith modeled mode, like an independent linear oscil-
lator, is augmented with an additional dashpot whose damping coefficient is
§mMi. This is why Canavin called such s design a “"decoupled controller", or
"modal dashpots” [l1].

. *

The diagonal elements §yj should be nonnegative to pake a practical sense.
Like (4-4), it can be given in terms of damping ratios SMi and natural frequen-
cies wyy as

* *
Si = 2 Ty Omi (4-16)

t Given whatever values to the matrices, it is mathematically an exact solu-
tion so far as the equation (4-8) is concerned. 0f course, it may not be an
exact solution so far as the system (4~2) or even (4-7) is concerned, when any
matrix, for example the modal matrix ¢ as usual, contains some modeling or
computational errors. Small errors in ¢ may invalidate stability results of
general feedback gains but not the modal-dashpot type [20]-[23].
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4.3 Improvement on the Design Method

One can design very effective vibration controllers by the method of modal
dashpots, as demonstrated by our applications to SCOLE. The interesting simple
formula (4-10)-(4-12), however, does not by itself complete the design
method for an effective control of gstructural vibrations. In fact, when
the concept of modal dashpots was initially formulated by Canavin [10]-[12] as
"decoupled controller”, it was accompanied by two major technical drawbacks
that almost rendered itself practically useless. Later, through various
numerical evaluations and theoretical analyses, Lin and his associates
[20]-{24] identified the underlying causes of these problems, and greatly
enhanced the utility of this concept. In the course of applying it to the
challenging SCOLE vibration control design problem, we also made some addi-
tional improvement on this design method.

A first initial technical drawback was the high-gain low-damping problem.
After he applied it to a representative large space structure (of which 37
vibration modes were considered), Canavin concluded that "the decoupled con-
troller may be of limited utility due to the high gains produced by this
approach "[l1]. The feedback gains were mostly in the orders of 10!° to 1012,
while only additional 10% of critical damping was designed for each of the 12
modes he had selected to be "controlled” (i.e., modeled) modes.

Aubrun [13] proposed the approach of low-authority control (LAC) by limit-
ing to 10%Z modal damping and by using sufficiently small gains so that the
amount of active damping achievable is predictable. Since then, direct velo-
city-output feed back control has been commonly thought to be of only low
authority, low performance, and secondary importance. However, the vibration
controllers of Aubrun's design should be of low authority, not because of
direct velocity-output feedback, but rather because of the applicability of
Jocobi's root perturbation formula on which he based his theory. For his use
of the perturbation formula to remain valid, the control authority (and
specifically the feedback gains) must be sufficiently low so that the closed-
loop eigenvalues and eigenvectors would be resulted from only infinitesimal
perturbations, i.e., only very small increase in damping ratios.

A second initial technical drawback of the basic design method was severe
interactions between modeled and wunmodeled modes. When the method was
ipplied to another representative large space structure (i.e., ACOSS model 2
'33]), the interactions were so severe that the desired damping performance on
the modeled modes was degraded very badly, although the closed-loop system
remained stable [24].

The following common causes were discovered.

(1) Some modeled modes had too small control influences (¢M1TBF) or too small
observation influences (Cy¢pmi)- This made the generalized inverses (&yTBp)R
or (CVQM)L, and hence the resulting gain matrix, unnecessarily large.
Theoe low-influence modes should he deleted from the reduced-order model,
or else some actuators or sensors should be relocated to improve their in-

fluences on these modes.

(2) Some of the rows in matrix ¢yTBp had too small degree of independence from
the others, or some columns of Cy¢y had the similar situation. This also
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made the generalized inverses, and the gain matrix, unnecessarily large in
magnitude. Like (1) above, these modes should be excluded, or the location
of some actuators or sensors be improved.

(3) Some low-frequency unmodeled modes had too large control influences
(¢UjTBF) or observation influences (Cy¢yj) compared to those of the modeled
modes. This made excessive spillover. hese modes should be added to the
reduced-order model; otherwise, some actuatore or sensors should be relo-
cated, or their influences be properly synthesized [35]-[36].

(3) Some of the desired additional damping coefficeints (GMi*) were too large
for some modeled modes, even all were set equal to the same small design
value (say, t¢yi = 0.1). This made some part of the gain matrix unneces-
sarily large, and hence increased interactions with some unmodeled modes.

Open-loop responses of individual modeled modes should be analyzed and the
need for additional damping realistically guesstimated with respect to the
control/observation influences on each modeled mode. TFor properly designed
modal dashpots, e.g., our design for SCOLE, the additional damping could be as
high as 677% for some modes or as low as 3% for some others, depending on the
ability of the actuators as well as on the individual open-loop responses.

We have begun to develop the concept of modal dashpots into a useful sys-
tematic design method for direct output feedback vibration control. Although
the closed-form formula has reduced the design of modal dashpots to simple
cranking of numbers, yet to make it really work for effective control of large
excited structural vibrations in flexible space systems, such as the SCOLE con-
figuration, many careful pre-design steps have to be taken.

The design method was initially formulated by Canavin without explicit
consideration of limitations on the requirement for control forces and torques.
Now, the explicit limits must be considered when applying the method to SCOLE.
Also, some saturation "circuitry” must be imposed on the feedback control so
that the magnitude of the forces or moments generated by the modal dashpots
would automatically be 1limited to 800 1b and 10,000 1b-ft, respectively.
Saturation may not destroy stability when actuators are co-located with sen-
sors [37], but would somehow liwit the performance of the feedback con-
troller.
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5. DESIGN OF MODAL DASHPOTS FOR SCOLE

The vibrations in the SCOLE configuration excited by the rapid time-minim-
ized BPB LOS pointing slew maneuver, as reported in Section 3.1, posted three
serious vibration control design challenges:

(1) The excited vibrations were excessively and unrealistically large in magni-
tude: the line of sight once had an error of 89.9° (or beyond) and the
130-ft mast once had a tip deflection of 114 ft.

(2) The allowable time wés extremely short: it should be minimized, so only
an equally short time (specifically, only 5 sec, which was approximately
equal to the maneuver time) was allowed.

(3) The available control forces and moments were limited: the 800 1b and
10,000 1b-ft limits were imposed the same way as on slew maneuvers.

In order to design effective modal dashpots for suppressing such excessively
large vibrations in SCOLE in a very short time, we conducted careful pre-design
analyses on the vibration modes and their influences by the actuators and sen-—
sors. The candidates for modeled modes were selected, and then divided into
two groups according to the actuator influences. The design of the modal
dashpots was therefore divided into two parts accordingly.

5.1 Analysis on Vibration Modes

Initially, two different numerical analyses of SCOLE vibration modes were
made, each with a different standard measure of importance. The results were
inconsistent. Then a third measure was developed and used; the results were
finally fair and satisfactory.

5.1.1 Measure 1: LOS Error due to Initial Modal Displacement

“LOS error contribution” is a common measure used by many structural dynami-
cists for determining if a vibration mode is "critical” or not, i.e., if it needs
active control or not. It was used by Draper Laboratory [33]-[34], and
accepted by other ACOSS* and VCOSS** contractors [38]-[45] as the standard
approach, in the modal analysis of both Model No. 1 (namely, the Tetrahedron)
[34] and Model No. 2 [33] of representative large flexible precision space
structures. The standard approach is to express the LOS error as a linear
frinction of physical coordinates under the assumption that all the displace-
ients are sufficiently small. When the physical coordinates are transformed
into the normal coordinates of the structure, the LOS error become a linear
function of the normal coordinates. The "critical modes” are then determined
by comparing the modal coefficients of the LOS error.

Such a measure is not directly applicable to rapid pointing of the SCOLE
configuration nor, in general, to large space structures that are subject to
r..id slew or retargeting maneuvers. First, the displacements (deflections and
torsions, for example) generally are large, hence the linearization of the LOS
error is not valid. Thus, for SCOLE, we used 'the original nonlinear expression

Active Control of Space Structures, a DARPA technology program.

Vibration Control of Space Structures, sponsored by Air Force Wright
Aeronautical Laboratories.
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without 1linearization. Secondly, the LOS error is a dynamic vibratory res-
ponse, instead of being simply a static displacement of the line-of-sight.
Thus, instead of comparing only the LOS error coefficients, we compared the
time histories of the LOS crror the individual modes would separately causc if
they were intially excited alone.

For this analysis, the SCOLE configuration was assumed to be initially at

rest with no LOS error*, and only one mode was excited each time because of a
unit initial displacement in its normal coordinate. Specifically, for the ith
time history, the initial condition was assumed to be:

ng =1, and nj = 0 for all j# 1 ; ﬁj = 0 for all j.

For each such initial modal displacement, the time history of the resulting LOS
error was calculated separately using our computer simulation program.

The results of 10 separate cases (one for each mode) are shown together by
the overlapped plots in Fig. 5-1, where each curve represents a completely
separate time history of LOS error. Listed below are the highest peak value

of each time-history curve.

Mode: 1 2 3 4 5 6 7 8 9 10
Peak: .37 .53 .54 .93 1.3 .14 .51 .002 .18 .03

The relative importance of the 10 modes is thus given in the descending order
as follows.

Mode: 5, 4, 3, 2,7, 1, 9, 6, 10, 8.

5.1.2 Measure 2: Modal Response to the Rapid Pointing Maneuver

By intuition, a vibration mode is more in need of active control than others
when its magnitude of excited vibration is larger. Thus, a second measure of
importance for the SCOLE configuration naturally is the vibratory response of
each mode to the rapid pointing maneuver. For this analysis, the configuration
was assumed, as before (in Section 3.1), to be initially at rest without any
LOS error or any nonzero initial conditions, and the same BPB slew maneuver
was the source of excitation. The time history of the resulting modal res-
ponse nji(t) was calculated for each mode separately.

The results are shown by the plots in Fig. 5-2, with each curve represent-
ing an individual mode. Listed below are the highest peak value of the curves.

Mode: 1 2 3 4 5 6 7 8 9 10
Peak: 21.6 603 41.2 13.7 0.49 0.48 0.28 .058 .041 .001

Accordingly, the relative importance of the 10 modes is thus given by the fol-
lowing descending order:

Mode: 2, 3, 1, 4, 5, 6, 7, ...

* As stated in the beginning of Section 3, we assumed that, before any of its
vibration mode was subject to excitation, SCOLE was initially at rest and had
no deformation nor LOS error. Specifically, the undeformed configuration was
assumed to have been aligned with the attitude angles of zero LOS error.
Therefore, if all the normal coordinates and velocities were zero, the LOS
error would remain zero.
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5.1.3 Measure 3: LOS Error Solely due to Each Mode Excited by the Man-
euver

To measure by the LOS error a vibration mode could cause, or to measure by the
extent to which a vibration mode could be excited, seems to be a rather rea-
sonable technique by itself, but the resulting rankings were inconsistent and
rather confusing. For example, Mode 5 is the most important one by Measure 1
but only the fifth by Measure 2. Moreover, Mode 5 could even be ignored
because of its insignificant Measure-2 value (about two orders of magnitude
smaller than the fourth). Similarly, Mode 1 ranks number 3 by Measure 2 but
only number 6 by Measure 1. It was hard to determine rationally which modes
would really need active control. A third measure was then developed.

For this analysis, the LOS error caused by a single mode alone was calcu-
lated separately, like for Measure 1, but the mode causing the error was
excited by the very maneuver of concern, instead of initial conditions. All
the initial conditions were assumed to be zero. On the other hand, the excita-
tion of the vibration modes was exactly the same as for Measure 2, but the
resulting LOS error, instead of the modal response, was taken as the measure.

This measure is a sound rational combination of the cause (slew exci-~
tation) and the effect (LOS error) with respect to each vibration mode.
It can appropriately indicate for each mode individually the extent to which a
single mode could be excited, and the degree of LOS error this mode alone
could cause if it alone were so excited and, hypothetically, no other modes

were present at all.

The 10 separate numerical results are shown together by the plots in Fig.
5-3. Each curve represents the LOS error caused solely by a single mode
while the mode was being excited by the rapid slew maneuver. The table below
lists the highest peak value of the each curve.

Mode: 1 2 3 4 5 6 7 8 9 10
Peak: 3.26 88.6 9.57 6.53 0.33 .036 .077 .002 .004 .0002

The relative importance of the 10 modes is thus given by the following des-
cending order:

Mode: 2, 3, 4, 1, 5, 7, 6,...

An inspection of this ranking and the peak values will show that a signifi-
cant break between the fourth- and fifth-ranked modes (i.e., modes 1 and 5,
respectively). We thus selected the four top-ranked modes, i.e., modes 2, 3,
1, and 4, as the primary candidates for modeled modes.

Mode 5 is marginally important compared to other modes, but is the fifth in
the rank and has a much higher value than the remainder. We therefore consi-
dered it to be a secondary candidate for modeled modes.

Mode 1 could have been ranked higher than Mode 4 if the time average were
used instead. This would make no significant difference, however, since both
were among the top four modes anyway, and these four had all been selected to
be primary candidates for modeled modes.
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5.2 Analysis on Modal Control Influences of Actuators

We recently discovered that the high-gain problem Canavin encountered in
his first modal dashpot design [11] would not have existed if he had paid
attention to the ill counditioning of the coefficient matrix QMTBF he used in
his numerical example. Among the 12 "controlled modes” he selected to form
his reduced-order design model, several have very little control influences
from the 32 actuators he used on the structure*. It is intuitively apparent
that actuators having smaller influences on a given mode are less effective in
controlling the mode, and thus require to be compensated with larger gains.
Mathematically speaking, when the smallest "singular value” of the coefficient
matrix GMTBF is one order of magnitude smaller, the largest singular value
of the resulting gain matrix G* as a solution of Eq. (4-7) generally is two
orders of magnitude larger. This means that not all his "controlled” modes
should be included in the modal-dashpot design without any discrimination
against ' excessively small control influences by the actuators. In other
words, all the available actuators need not be lumped together to control
all his "controlled” modes through one large feedback gaim matrix.

To make an effective design for the SCOLE configuration, we analyzed the
control influences of the actuators first and match those modes in need of
active control with the right actuators.

For evaluating and comparing their modal influences properly, we grouped
the actuators according to their location on the SCOLE configuration as well
as their type. As a result, the actuators** were divided into the following
four different groups:

Group l: Actuators 1 to 3, for applying moments on the Shuttle about its body

x, y, and z axes, respectively;

Group 2: Actuators 4 to 6, for applying moments on the Reflector about its
body x, y, and z axes, respectively;

Group 3: Actuators 7 and 8, for applying forces at the Reflector mass center

in the x and y directions, respectively;

Group 4: Actuators 9 to 12, for applying forces at two specific points on the

Mast beam in the x and y directions, respectively.

The control influences on each mode, say mode i, from all the actuators in
a specific group can be summarized by calculating their RMS (Root-Mean-Square)
value

J[(ﬁbm)z #(8Tbg,)? wer +(oTbp )2 J/k

over the group. Listed in Table 5-1 are these RMS values in the descending
order.

* The antenna-like structure consisted of a large dish in the forward section
and a gimbaled equipment section to the aft. It had 32 member dampers (as the
co-located actuators and rate sensors). Its finite-element model has 35 deg-

rees of freedom.

__38__



Table 5-1 RMS Actuator Influences on first 10 Modes

Group 1 Group 2 Group 3 Group 4
Mode Act. 1 - 3 Mode Act. 4 - 6 Mode Act. 7 - 8 Mode Act. 9 - 12
2 0.30019961E-02 5 0.36487188E-01 2 0.14311218E+01 2 0.10711402E+00
4 0.41220308E-03 4 0.25172627E-01 1 0.14061384E+01 1 0.10338868E+00
1 0.40146321E~03 3 0.15999462E-01 3 0.81986851E+00 3 0.10171293E+00
3 0.19184369E-03 2 0.15595800E-01 4 0.39743480E+00 4 0.69439910E-01
5 0.11186474E-03 7 0.14711439E-01 7 0.30395976E+00 9 0.68373762E-01
6 0.69881789E-04 1 0.13037169E-01 9 0.25503686E+00 8 0.67025743E-01
7 0.36829457E-04 9 0.57048416E-02 6 0.21852742E+00 5 0.63191518E-01
8 0.26261532E-04 6 0.34139471E-02 8 0.14623879E+00 10 0.46103600E-01
9 0.15072107E-04 8 0.12352261E-02 10 0.10801539E+00 6 0.39935779E-01
10 0.13497747E-04 10 0.63637015E-03 5 0.74399590E-01 7 0.32263912E-01
Table 5-2 RMS Sensor Influences on first 10 Modes
Group 1 Group 2 Group 3 Group 4

Mode Sen. 1 - 3 Mode Sen. 4 - 6 Mode Sen. 7 - 8 Mode Sen. 9 - 12
2 0.28690067E-03 5 0.34890966E-02 2 0.13466856E+00 2 0.10711402E+00
4 0.39390128E-04 3 0.32387748E-02 1 0.12736945E+00 1 0.10338868E+00
1 0.39113598E-04 4 0.24055073E-02 3 0.12407852E+00 3 0.10171293E+00
3 0.18940789E-04 2 0.15346858E-02 4 0.38158901E-01 4 0.69439910E-01
5 0.10689848E-04 7 0.14879148E-02 7 0.36793593E-01 9 0.68373762E-01
6 0.66779044E-05 1 0.13531352E-02 9 0.30879460E-01 8 0.67025743E-01
7 0.35194691E~05 9 0.67911280E-03 6 0.20832075E-01 5 0.63191518E-01
8 0.25095521E-05 6 0.32624099E-03 8 0.14005536E-01 10 0.46103600E-01
9 0.14402938E-05 8 0.11804001E-03 10 0.10299906E-01 6 0.39935779E-01
10 0.12898448E-05 10 0.60812166E-04 5 0.90737212E-02 7 0.32263912E-01

Observe that Actuators 1 to 3 (Group 1) have an RMS value for Mode 2 that
is one order of magnitude higher than all other modes, and hence are most
effective in controlling Mode 2 than controlling other modes. Observe also
that Mode 2 ranked the highest in RMS value with respect to Group-3 actuators
7 and 8. 1In addition, this RMS value 1is two orders of magnitude higher than
that with Actuators 1 to 3. Consequently, Actuators 7 and 8 should be more
effective for controlling mode 2 and require much smaller feedback gains.
Note that Actuators 9 to 12 (Group 4) are less effective than Actuators 7 and
8 in controlling Mode 2.

With a similar argument, Actuators 7 and 8 are also most effective in con-
trolling Mode 1. Therefore, Modes 1 and 2 and no more others should be
selected as the "modeled modes” in the design of the modal dashpots using
Actuators 7 and 8.

Since Mode 3 is a torsion mode and is more appropriate to be controlled by
moments than forces. The RMS values clearly suggest that Actuators 4 to 6
(Group 3) will be more effective than Actuators 1 to 3 for controlling Mode 3.
Although among the four groups, Actuators 9 to 12 did have the highest RMS
values of control influences on Mode 3, we did not expect the proof-mass actu-
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ators (9 to 12) to be capable of suppressing large torsional vibrations of any
mode in such a very short time.

The RMS control influence on Mode 4 is larger from Actuators 4 to 6 than
from Actuators 1 to 3. Consequently, both Modes 3 and 4 should be selected
as the "modeled modes” in the design of modal dashpots using Actuators 4 to
6.

All the four primary condidates have been selected as the "modeled modes”
for the appropriate matching groups of actuators. A review of Table 5-1 will
show that Mode 5, the secondary candidate, has a higher RMS value of control
influences from the same Group 2 of actuators than both Modes 3 and 4.
According to a previous study by Lin and Jasper [24], such a situation would
result in large spillover of Mode 5, severe dynamic interactions of modeled
modes with unmodeled modes, and significant degradation of damping performance
if Mode 5 were not also modeled with Modes 3 and 4 for control by Actua-
tors 4 to 6.

To summarize, this analysis shows applying moments and forces at the Ref-
lector end of the Mast beam will be more effective in controlling the excited
vibrations in SCOLE (and particularly Modes 1 to 5) than at the Shuttle end or
at the intermediate points of the flexible mast. Instead of lumping up all
candidate modes (1 to 5) to be controlled by Actuators 4 to 8 together, the
designer for modal dashpots should match these modes with their most effec-
tive or most appropriate actuators. Specifically, Modes 1 and 2 should be
controlled by Actuators 7 and 8 and Modes 3 to 5 by Actuators 4 to 6.

There is no need to include more modes to each group since there are
enough actuators to be distributed among all the 5 most important modes of

the SCOLE flexible-body dynamics. Including more modes may not always help:
it might simply increase the magnitude of the feedback gains without any real
benefit, particularly when the additional modes are of significantly smaller
control influences by the actuators; the increased feedback gains might in-
stead amplify various adverse effects of control spillover and system noises.

5.3 Design of Modal Dashpot MDl

The modal dashpot MD1l was designed for SCOLE for quick suppression of the
excessive vibrations excited by the rapid BPB LOS pointing slew maneuver. It
is composed of two parts. Part 1 is for applying forces at the Reflector mass
center in the two transverse directions using a feedback of linear velocities
at the Reflector end of the beam. Part 2 is for applying moments also at the
Reflector about the three body axes but using a feedback of angular velocities
instead.

The location of these actuators are the same as specified by Taylor in
Ref. 1 for the control forces and moments at the Reflector. The sensors were
located where the "outputs” of Dr. Joshi's modal data set D3D585 had been cal-
culated. Some of the control imputs (uj) and observation outputs (yj) were re-
labeled for technical convenience. Sensors 1 to 8 are not really co-located
with the correspopnding actuators, but note that their RMS values of modal
observation influences (Table 5-2) exhibit virtually the same patterns as
those of modal control influences (Table 5-1).
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5.3.1 Part 1: Linear Velocity Feedback Force Control

Two force actuators (or equivalently, a single force actuator capable of
delivering separate forces in two independent axes) are assumed to be placed
at the center of the Reflector. The force inputs* uy and ug (in the x and y
directions, respectively) are each limited to 800 1lb as specified. Two linear
velocity sensors (or equivalently a single velocity sensors capable of measur-
ing the rate of linear displacements in two independent axes) are assumed to
be located at the Reflector end of the mast beam. The sensor outputs** y;5
and y1g (in the x and y directions, respectively) represent the time rate of
deflection of the Mast beam at the Reflector end relative to the Shuttle end.
Note that these sensors are only approximately co—-located with actuators:
they are apart by 18.75 ft and 32.5 ft in x and y directions, respectively,
whereas the beam is 130 ft long.

The design problem is thus to determine a 2x2 gain matrix Gpyr for the
following linear velocity feedback control law

ru7 - - Y15-|
|,u8_| LVR Y16

The foregoing analysis of the control influences has suggested that only
Modes 1 and 2 be selected as the "modeled modes” for this part of design.
Accordingly, the control and observation influence matrices ®yIBp and Cy®Mm
on the two modeled modes to be used in the modal dashpot design equation (4-8)
have the following numerical values:

(5-1)

oIB. = .19875923E+01 .62669927E-01 (5-2a)
M"F .14599262E+00 -.20186396E+01
C o = .18012760E+00 .21140305E-01 (5-2b)
V'™ .55188192E-04 -.18927317E+00

Before solving the corresponding design equation (4-8) for a specific gain
mgtrix, we must specify the desired value for the additional damping matrix
Aym. For technical simplicity, we choose it to be diagonal, so that its diago-
nal elements §y] and §yo can be used rather directly for guiding the modal-
dashpot design. Since both modes 1 and 2 substantially dominate the vibratory
response of the SCOLE configuration to the BPB point%¥g maneuver, we wish to
augment each with active damping as close to 70.77 of critical damping as

* These correspond to uy = Fry and ug = Frys respectively, in Dr. Joshi's nota-
tion.

** These are indirectly equal to the derivatives of the deflections y7 = Ey and
y8 = &y in Dr. Joshi's notation.

t These terms represent the additional damping coefficients in the correspond-
ing decoupled equations of motion; see Eqs. (4-14)-(4-15). In mnultivariable
root-locus analysis, these values also represent the "rate of departure” from
the open-loop poles when the feedback loops are closed.

Tt 70.7% is an optimal value in the sense that the second-order system cor-
responding to the single mode will neither be too sluggish nor have a large
overshoot.
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possible. Let us attempt a theoretical 2% settling time of 3 seconds for
Mode 2 in estimating the desirable additional damping coefficient 62. The cor-
responding time constant is 3/4 sec; thus by definition

Lyw, = 4/3
where 22 denotes the closed-loop damping ratio desirable of Mode 2. Substi-
tuting in the natural frequency w, = 1.97024 rad/sec yields

22 = 0.6767,

which is acceptably close to the optimal value. Whence, the closed~loop damp-
ing coefficient desirable of Mode 2 is given by

62 =2 C2 w, = 8/3.

Since an inherent damping of 0.3% has been specified in the data set
"D3D585" for each mode, the desirable additional damping coefficient? desirable
of Mode 2 is

* -—
62 = 62 -2 ‘2 0,

Next, we choose the additional damping desirable of Mode 1 to be 60%,
i.e., tT)* = 0.6, since Mode 1 has a smaller magnitude of vibration than Mode 2.

= 8/3 - 2 x 0.003 x 1.97024 = 2.6548

In summary, the desired damping coefficients as in Eqs. (4-14)-(4-15) for
the two modeled modes are then readily given as

* * *

GMl = 61 =2 Ly w = 2 x 0.6 x 1.7470 = 2.0964 (5-3a)
* *

6M2 = 62 = 2.6548. (5-3b)

Now the feedback gain matrix Gpygr is readily obtained from solving (4-8) as

G _ +58420630E+01 «43392044E+00 (5-4)
LVR -42038249E+00 +69796355E+01

5.3.2 Part 2: Angular Velocity Feedback Moment Control

Three torquers (or equivalently, a single torquer capable of delivering
separate touques about three independent axes) are assumed to be located on
the Reflector. The torque inputs u4, usg, and ug (about the x, y, and z axes,
respectively) are each limited to 10,000 1b-ft as specified. Three angular
velocity sensors (or equivalently a single sensor capable of measuring separ-
ately the rate of rotations about three different axes) are assumed to be
located at the Reflector end. The sensor outputs** Y10, ¥i1, and y,, (about
the x, y, and z axes, respectively) represent the time rate of rotations of the

# The corresponding additional damping ratio gg for Mode 2 is 0.6737. A few
slightly modified values were also tried when the design of this part was rep-
eated (see Section 6.2).

* These correspond to Dr. Joshi's ug = Ty, uy = Try, and ug = Ty, respec-
tively.

** These correspond to Dr. Joshi's yj9 = ¢, y13 = 8p, and yi4 = dp, respec-
tively.
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Reflector end of the mast due to bending and torsion. Again, these sensors
are only approximately co-located with the actuators. Note that the Ref-
lector itself is a rigid body.

The design problem is to find a 3x3 gain matrix Gpyr for the following
angular velocity feedback control law

ru4-| le
u = -G y
5 AVR | Y11 (5-5)
Y6 N2

Similarly, as suggested by the previous analysis on control influences, we
choose Modes 3, 4, and 5 to be the "modeled modes”™ for this part of the
design. Accordingly, the specific control and observation influence matrices
are given by

.10761780E-01  -.18101653E-01  ~.18012847E-01 ]

oTp = | +37541741E-01  .22172032E-01  .45802862E-04 (5-62)
M°F © | -.31739483E-01  .54643290E-01  .81303515E-03
C .10592386E-02  .35194610E-02  -.30149737E-02 ]

Co = |~-17367745E-02  .21135667E-02  .52175940E-02 (5-6b)
v’ = | -.52450669E-02  .13325330E-04  .23641118E-03 |

Since the vibratory responses of Modes 3, 4, and 5 are much smaller in
magnitude than those of Modes 1 and 2, it is reasonable to augment them with
only a relatively small amount of active damping. We chose rather arbitrarily
3% of critical damping for each. The diagonal elements of the desired addi-
tional damping matrix A, are then given as follows:

M
§* =6 =2 x 0.03 = 0.3065 5-7
M1 3=2x0. X wy = 0. ( a)
* *

GMZ = 64 =2 x 0.03 x w, = 0.4470 (5-7b)
* *

byy = S5 = 2 % 0.03 x w, = 0.7742 (5-7¢)

Substituting (5-5)-(5-7) in Eq. (4-8) and solving the resulting equation, we
get the following gain matrix

[ .24172707E+04 .16653096E+03  * .45158162E+03 ]
.15734103E+03 .21781213E+04 —.72768193E+03J

Cavr = L \13433660E+04  =.22055215E+04  .42951681E+04 (5-8)
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6. PERFORMANCE OF VIBRATION CONTROL DESIGNS ON SCOLE

To evaluate the vibration control performance of the modal dashpot design
MD1l, we incorporate the two feedback laws (5-1) and (5-5) into the same SCOLE
flexible-body dynamic model as was used in simulating its vibratory responses
to the BPB pointing maneuver. As stated in the beginning of Section 3, the
undeformed SCOLE configuration was assumed to have been aligned with the spec-
ific attitude of zero LOS error. Thus, the velocity-sensor outputs would con-
tain only the flexible-body rates*, just as desired for feedback control of the
excited vibrations. Recall that the model is of the "full order” in the sense
that it includes all the ten modes as provided in the data set D3D585. 1In
order that the control moments and forces do not exceed their specified
limits, the computer program also simulates the saturation of the actuators at
their respective limits. For example, if at any time the feedback control
input, say, ug would command the actuator to exert more than 800 1lb force to
the Reflector, the actual force applied would be only 800 1b maximum.

The feedback control consisting of the two parts of modal dashpot MD1 is
turned on right after the completion of the BPB pointing maneuver. Thus the
terminal state of the SCOLE vibrations (i.e., the LOS error, the deflection and
its rate of change, the angular displacement and its rate, modal displacements
and velocities,...) at the end of the maneuver become the initial conditions
of the feedback controlled system. The vibration control is applied for five
seconds, which is about the same duration as of the pointing maneuver. We in-
tentionally use such a rather "long” period in order to check if instability in
the closed-loop system might start to develop after the excessive vibrations
has been rapidly forcefully suppressed. Various versions of the modal dashpot
design MD1l (each with a slightly different value for the additional damping
coefficient 6,*) were evaluated. Reported below are two representative cases.

6.1 Simulation Results of Modal Dashpot Design MDl1

The specific values of the gain matrices Gpygp given by (5-4) and Gpyr given
by (5-8) were incorporated with the control laws (5-1) and (5-5) respectively
in the full-order dynamic simulation. The simulation results are summarized
by time-history plots in Fig. 6-1.

The history of the applied moments and forces (Fig. 6-1la) shows that the
applied moment about each axis never exceeded the limit of 10,000 1b-ft, nor
did the applied force in each direction exceed the limit of 800 1lb. Large
moments and forces were needed only during the early portion of the control
period, but did not exceed the limits because of "saturation”. All the applied
forces and moments quickly reduced to minimum automatically because the
sensed rates of vibrations rapidly became insignificant.

Fig. 6-1b shows that the LOS error was rapidly subdued to 11.79° from
71.43° where the pointing maneuver ended. Note that the initial LOS error con-
tinued to rise to 85.29° (or 115.13° = 180° - 64.87° if not taking the principal

* If the configuration had not been so aligned, then rigid-body rate would also
be present and some filtering or signal processing might be required. Alterna-
tively, one could use relative sensors instead of inertially referenced sen-

s80rs.
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value of the arcsine function) because of its large rate of change at the very
instant of switching from pointing maneuver to vibration control. Neverthe-
less, the LOS error was suppressed down within 18.46° after only 2.5 sec of
active vibration control and remained below 17.54° thereafter. Moreover, it
was even reduced to 11.79° in 3.1 sec.

The bending of the mast beam was very rapidly suppressed to virtually
null. Observe in particular that even the y-directionally deflection at the
Reflector end (i.e., yj4) continued to increase to 119.7 ft (again because of
the large "initial” rate of change), it was suppressed down into the band of
*5 ft in only 2 sec, and into the band of *0.5 ft in 4.2 sec. It is interest-
ing to notice that it took less than 2.9 sec* to settle within 2.4 ft, 2% of
the peak value. Recall that a 2% settling time of 3 sec for Mode 2 was used
in the design.

Fig. 6-1lc shows the rapid reduction of the initially large deviations in
the Shuttle and Reflector attitude angles to zero in a very short time. The
last peak diviation of the Reflector roll, pitch and yaw attitude angles is
only 0.460°, 0.546° and 1.360°, respectively.

Fig. 6-1d shows that the large-magnitude vibrations of first five modes
all were rapidly suppressed to virtually zero in a very short time. Note in
particular that this vibration control was very effective for quick reduction
of the excessively large magnitude of Mode 2. Observe, on the other hand,
that Mode 5, the secondary candidate, was reduced only in a moderate rate by a
moderate amount, but recall that it was not really significant at first place
with respect to excitation by the BPB maneuver nor its contribution to the LOS
error. Mode 5 did not need much active control anyway, and hence only a very
small additional damping was designed for it.

The vibrations in other modes (i.e., Modes 6 to 10) remained virtually in
the same insignificant levels as before, and hence their plots are omitted.
Still their magnitudes were more or less decreased with time because of some
concomitant additional damping as a side benefit of spillover.**

6.2 Simulation Results of A Modified Version of MD1A

We also tried a few other versions of the modal dashpot design MD1 by var-
ying the additional damping coefficient §,* desired of Mode 2. Because of the
saturation of the actuators at the imposed limits, it is reasonable to consider
some smaller feedback gains. The following is a typical case.

* The peak occurred at t = 0.5 sec whereas the deflection was -2.24 ft at t =
3.4 sec.

** In the standard LQG design, one will generally try hard to reduce spillover
because it has been well known to degrade performance and even to introduce
closed-loop instability. With a modal-dashpot design, spillover can be bene-
ficial instead, in leaking some active damping forces to unmodeled modes.
Such is particularly the case when the design is not carefully focussed. The
side benefit in our design was intentionally minimized because we tried to
maximize our effort on the most important modes and matched them with most
influential control actuators to minimize the leak.
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This version, let us call it MDlA, is almost the same as before, except
that the additional damping ratio z,* desired of Mode 2 was arbitrarily set
equal to that of Mode 1; namely,

¥ = 0.60.

*
‘2 1

Therefore,

6; =2 c; wy 2 x 0.6 x 1.97024 = 2.36429 (6-1)

Mode 2 would then have a theoretical 27%-settling time of 3.38 sec.

Using the new value for 62* in (5-3b), and repeating Part 1 of the modal

dashpot design, the following new value of the feedback gain matrix was read-
ily obtained.

e o | -58420557E+0L  .45784262E+00] (6-2)
LVR -42061494E400  .62209375E+01 |

The same simulation was then repeated with these new values. Results are
summarized by the plots in Fig. 6-2. The applied moments and forces shown in
Fig. 6-2a are virtually the same as before (Fig. 6-la) with only some invisible
differences. Some meaningful differences do exist in the histories of LOS
error and beam deflection.

Observe that the LOS error (in Fig. 6-2b) quickly reduced to about 9.57°
from the same initial value (71.43%°). Similarly, due to large initial rate of
change at the end of the pointing maneuver, the LOS error also continued to
rise to 85.61° (or 180° - 64.81° = 115.19° if not taking the principal value of
the arcsine). The large LOS error was suppressed down to the level of
16.66* in 1.8 sec, and remained under it thereafter. Moreover, it was reduced
to 9.57° also 3.1 sec after the vibration control began.

The bending of the Mast was also suppressed down very rapidly. Though it
continued to increase to 120.28 ft, the y-directionally deflection at the Ref-
lector end (i.e., y]14) was suppressed down into the bamnd of *7.35 ft in less
than 1.8 sec., and into the band of #0.75 ft in 3.7 sec. It took less than 3
sec for the large deflection to settle down to the band of 2% of the peak*,
i.e., ¥2.4 ft. Recall that 3.38 sec 1s the theoretical 27Z-settling time used
for Mode 2 in this modified design.

The histories of attitude changes (Fig. 6-2c) and modal responses (Fig.
6-2d) are again virtually the same as before (compared to Figs. 6-1c and 6-1d,
respectively) with only some invisible or insignificant differences. The last
peak deviation of the Reflector roll, pitch, and yaw attitude angles is omnly
0.714°% 0.582°%, and 1.399° respectively.

* The peak occurred at t = 0.5 sec., whereas the deflection was only -1.95 ft
at t = 3.5 sec.
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6.3 Comments

6.3.1 The modal dashpot designs of vibration control met the vibratiomn
control design challenges fairly well and are effective and fast in sup-
pressing excessive vibrations. Excited by BPB type rapid pointing slew man-
euver, the flexible mast beam deflected between +114 ft and -113 ft, but such
an excessive vibration was then quickly suppressed down to less than 0.75 ft
in 1less than 3.7 sec after a modal-dashpot vibration control was turned on.
The roll vibration of the Reflector between -86.96° and +88.35° during the man-
euver was also quickly suppressed down to less than 0.72°. The large LOS
error of 89.8° (or 133.3° if not taking the principal value of the arcsine) was
also reduced quickly to less than 17.54°.

6.3.2 The original version of the modal dashpot design MD1 performed
slightly better than the modified version MD1A in suppressing the deflection of
the Mast beam and all the attitude deviations, but not so well in reducing the
LOS error. The modified version used a slightly smaller additional damping
ratio for Mode 2 in the design, i.e.,

t,* = 0.60 instead of ¢,* = 0.6737.
6.3.3 When a velocity feedback control, whether it is of the modal-dash-
pot type or not, is not properly designed, even feedback gains of an intermedi-
ate magnitude can cause severe interactions between modeled and unmodeled (or,
equivelently, between "controlled” and "uncontrolled") modes, and hence badly
degrade the desired performance of active damping augmentation [24]. The res-
ults of these two versions have shown, on the other hand, that if modal dash-
pots are properly designed, both the modal interactions and the performance

degradation are not problems.

Thus, some of the additional damping can be as high as the optimal value 0.707
if necessary, hence can have high feedback gains, to be really effective in
quick suppression of vibrations. In other words, not all velocity output
feedback vibration controllers are of low authority, low performance !

6.3.4 Now, not having to worry about the spillover and modal interaction
problems, the feedback gains of properly designed modal dashpots ideally can
be as high as the designer wishes. High gains can be as desirable for flexi-
ble-body vibration control as they have traditionally been for effective con-
trol of rigid bodies.

fligh gains are desirable for generating comparable negative feedback to offset
the vibrations. Theoretically, the higher the better. For example, the ver-
sion MD1 has a higher gain (because of higher r,*) than the version MD1lA, the
deflection and attitude deviations can be continuously suppressed down to
smaller values (e.g., ¥0.5 ft vs #0.75 ft, in deflection; 0.46° vs 0.714° in

Reflector roll angle,...).

The size of the feedback gains for a properly designed modal-dashpot
vibration control is virtually limited only by the force and torque capability
of the actuators. Since the vibrations were initially very large, the high
n1ing resulted in requiring larger forces and torques than their limits. The
simulated saturation thus restrict the applied force/torques to the limits.
Therefore, there are no needs to be concerned with high gains as much as
before, even the actuators may saturate at their force/torque limits.
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6.3.5 Recall that the badly excited modes, i.e., Modes 2 and 1, were made
most strongly controllable and obserable by carefully matching them with
actuators and sensors with the strongest influences. Recall also they were
strongly controlled by selecting them as modeled modes in the Part 1 design of
the modal dashpots and by adding to them the highest additional damping
ratios. The results of Sections 6.1 and 6.2 show that the resulting modal-
dashpot designs are very effective for fast suppression of large vibra-
tions. The results also show that spillover is minimum and that the unmo-
deled modes receive some small concomitant additional damping because of spil-
lover.

6.3.6 Unlike all other vibrations (deflections, attitude deviations and
modal responses), the LOS error was not reduced to a smaller value by the
version MD1 than by the version MDl1A. Also, the LOS error was not continu-
ously reduced to near zero as were all other vibrations, although the reduc-
tion from its excessively high peak was quite substantial. Nonlinear proper-
ties of large Euler attitude angles, and the truncated forces and moments
from the saturated actuators (due to high feedback gains) 1likely are the
causes. We have no clear explanations at the present time. Nevertheless,
observe Figs. 3-lc, 6-1lc and 6-2c that the Reflector continued to have suffi-
ciently large pitch and yaw ratations during the initial phase of the vibration
control, in addition to the main (and larger) roll rotations.

6.3.7 Figs. 6-1 and 6-2 show that after the excessive vibrations have all
been suppressed down to sufficiently low levels, the time rates of change
naturally start to become much less significant, and the modal-dashpot
vibration control also starts to become less effecitve. Unless the feedback
gains are increased thereafter, the vibrations may not continue to be reduced
to the desired precision in a reasonably short time. One way to achieve the
desired precision 1s to start to increase the modal-dashpot gains progressively
after the vibrations become sufficiently small, e.g., after 2 seconds of the

initial vibration control.

Another way is to switch to some form of "modern control™ for complet-
ing the vibration suppression and precision pointing. When all the displace-
ments and rates of change have become reasonably small, the whole dynamic
system becomes legitimately linear, and the LOS error expression legitimately
linearizable. The condition is wvery suitable for application of the modern
optimal state-feedback control technique.

Modern control using standard Linear-Quadratic-Gaussian (LQG) optimal state
regulators and optimal state estimators has traditionally performed very well
in precision pointing and attitude control of rigid-body systems, even using
small signals. For application to a flexible-body system, the modern control
must be very carefully designed, however; otherwise the notorious spillover
problems may destabilize the system instead!

6.3.8 Several major approaches to extend or adapt the LQG design tech-
niques were proposed during the years of ACOSS (Active Control of Space Struc-
tures) and VCOSS (Vibration Control of Space Structures) programs [38]-[45],
[15], [46]-[50]. ©Either the weighting matrices in the control performance
index is modified in some ways [51]-[52], or some positivity requirement is
imposed on the design [53], or some pre-design compensation of the actua-
tor/sensor influences is made {35]~[36]. All were successful to some limited
extents in addressing the major challenge of spillover problems, but are not
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readily applicable to realistic large flexible space structures.

Formal applications of the robustness theory [54]-[55] were started rec-
ently [56]-[59]. The method of loop transfer recovery (LTR) was also
applied to recover sizable gain and phase margins of LQ regulators. The modi-
fication recently proposed by Blellock and Mingorli [58] appears to have made
the LTR method more directly applicable to LQG controllers designed for large
space structures, so far as the uncertainties in the modal frequencies of the
plant are concerned. Recent results obtained by Sundararajan, Joshi, and Arm-
strong [59] are rather encouraging. Based on their interpretation of spillover
problems as additive uncertainty [60], [55], they were able to make an innova-
tive application of the LTR method to overcome spillover problem with their
LQG attitude controllers designed for the Hoop/Column antenna. This approach
has a great potential for practical application to realistic large flexible
space structures, since it appears to be able to overcome the spillover prob-
lem of an unlimited number of unmodeled modes.

Incorporating modal dashpots into a LQG or LQG/LTR design and following a
similar sequence of careful pre-design analyses certainly will greatly enhance
the stability and performance of the resulting LQG/MD or LQG/LTR/MD vibra-
tion controller. The two proof-mass actuators placed on the mast beam may
be used together with all the force and moment actuators on the Reflector and
the Shuttle for such a low-power but high-precision control.
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7. CONCLUSIONS

7.1 The two-stage approach is a feasible and promising one for rapid slewing
and precision pointing/retargeting of large flexible space systems and, in par-
ticular, the orbital SCOLE configuration. It is capable of rapidly slewing
the line-of-sight and settling the excited vibrations in a minimum time.
The resulting control design, in general, will consist of the following three

parts in cascade:

Stage 1l: a bang-bang type rapid slew maneuver based on the rigid-body dynamics
for pointing/retargeting in a minimum time; if excessive vibrations may
be excited, using smaller forces and moments should be considered.

Stage 2, Part l: a high-power modal-dashpot design of velocity output feedback
control based on the flexible-body dynamics for fast and effective
reduction of large excited vibrations to a small magnitude;

Stage 2, Part 2: a LQG/LTR design of optimal state feedback control augmented
with a broad-band low-power modal-dashpot design of velocity output
feedback control, also based on flexible-body dynamics, for (i) achiev-
ing the specified pointing accuracy in a short time and (ii) maintaining
the precision and closed-loop system stability. The LQG/LTR design
may be incorporated or integrated with an appropriate modal-dashpot
design.

7.2 Not all bang-bang (BB) type of time-minimized slew maneuvers will excite
large structural vibrations. When large forces are used up to their extremes
(for example, 800 1lb on the Reflector) to complete the specified slew angle
(20° of the rigidized configuration in the shortest time, the excited vibra-
tions can be excessively large in magnitude (e.g., a 1l4-ft peak deflection of
the 130-ft Mast beam), even only moderated maneuvers of the bang-pause-bang
(BPB) type is used instead. On the other hand, when properly selected small
forces, e.g., 25 1lb, of the kind of vernier RCS thrusters onboard the Space
Shuttle, are used, even BB-type maneuvers will excite very little vibra-
tions (e.g., 0.3 ft peak deflection of the Mast beam).

If the excited vibrations are excessive, a "high-power” modal-dashpot design
of velocity output feedback control can be used in the first part of the Stage
2 to suppress the vibration down to a reasonable small magnitude quickly and
effectively. 1f the excited vibrations are relatively small, or have already
been suppressed to a small magnitude, some modified form of linear—qua-
dratic (LQ) optimal state feedback control augmented with a "low-power”
design of modal dashpots can be used in the Stage 2 to achieve the desired
pointing precision.

7.2.1 The vibration modes of the SCOLE configuration were excessively
excited when an 800-1b force was applied on the Reflector in the y direc-
tion during a BB type slew maneuver. When the best Stage-1 design, i.e.,
the BPB roll-axis slew having the best LOS pointing accuracy with a minim-
ized slew time (4.89 sec) and the least sensitivity to nonzero products of
interia) was applied to the SCQLE flexible-body dynamics, the Reflector end
of the mast vibrated between +114 ft and -113 ft, the Reflector rolled
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between -86.96° and +88.35° and the line of sight jittered between 89.8°
(or 133.3° if not taking on the principal value of the sine function) and
14.7°.

Our carefully designed modal-dashpot type of velocity output feedback
control was able to suppress the excessive vibratiions quickly and
effectively: the Reflector end deflection down to #5 ft in 2 sec, and to
0.5 ft in 4.2 sec; Reflector roll to #3.48° in 7.1 sec, and to #0.54° in 4.4
sec; and the LOS error down to 11.79° in 3.1 sec. In other words, after
only about 2 to 3 seconds of applying the "high-power” modal dashpots, the
vibrations were reduced to a region where some form of linear-quadratic
optimal "state" feedback control (properly augmented with "low-power”
modal dashpots) would be effective in futher reducing the vibrations and
LOS errors to the desired precision.

7.2.2 The large magnitude of the force, i.e., 800 1b, applied on the Ref-
lector was responsible for the excessive excitation of vibratiomns in
the SCOLE configuration. Whether bang-bang type time-optimal slew man-
euvers would excite excessive vibrations or not depends on the allowable
maximum magnitude of the applied forces. When the limit of the force was
decreased to only one tenth (i.e., 80 1b) but the pointing slew maneuver
was still performed in a similar time-optimal bang-bang manner for the
same 20° angle, the excited vibrations were significantly decreased. The
maximum LOS error was 24.7°, comparable to the specified initial value (209)
due to the initial misaligment of the SCOLE configuration. The maximum tip
deflection (20.6 ft) of the mast beam was also quite reasonable compared
to the length of the Mast (130 ft). When no additional forces were
applied, however, the vibrations excited by the applied moments alone in-
creased, instead.

We found that if the applied force on the Reflector was about 25 1b,
i.e., in the range of the vernier RCS thrusters used on the Space Shut-
tle, the corresponding time~minimized bang-bang pointing slew maneuver
would excited very little vibratioms in the SCOLE configuration. The
Reflector end of the mast vibrated only between +0.25 ft and -0.30 ft, the
Rellector rolled only between +0.16° and -0.30°, ‘and the LOS error was at
most 0.51°. If the BB slew maneuver was followed immediately by some
form of linear—quadratic optimal "state" feedback control (properly aug-
mented with "low-power"” modal dashpots), such small vibrations and LOS
errors would be easily reduced to the desired precision.

7.2.3 During Stage 1, the BB maneuver using a 25 1lb force on the Reflector
required 10.96 seconds to complete the 20° slew while the BPB amneuver
using a 800 1b force on the Reflector required only 4.89 seconds. A
"high-power” modal-dashpot design of velocity output feedback control
required additional 2.5 to 3 seconds to bring the excessive vibrations
excited by the 800-1b maneuver down to the same order of magnitude as the
vibrations excited by the 25-1b maneuver. Therefore, the total time
required for both Stage 1 (slew) and Stage 2 (stabilization and pre-
cision pointing) is likely to be around 10 and 12 seconds, respectively,
for the two cases.
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The two stages of the 800-1b BPB maneuver will probably require the least
total time, but the excessive vibrations during the maneuver are impracti-
cal and undesirable.

The 80-1b BB maneuver requires a similar high-power design of modal-
dashpots for quick and effective suppression of the moderately large vibra-
tions to the same order of magnitude as the case of 25-1b maneuver. The
total time required for the two stages is 1likely to be also around 12
seconds or a little less.

7.3 Although modal-dashpot type of wvelocity output feedback control can be
designed as a usual diffuse (or "broad-band”) low-power (or "low-authority™)
control, the simulation results of our careful designs have shown that modal
dashpots can also be a concentrated high-power ("high-authority”) control for
fast and effective suppression of large vibrations. Careful pre—-design ana-
lyses made it possible to do so for SCOLE.

7.3.1 Our pre-design analysis on the vibration modes of the SCOLE configu-
ration shows that modes 2,3,4,1,5 are the five most important modes
requiring for vibration control and LOS error reduction, with mode 2 need-
ing active control the most.

7.3.2 OQur Pre-design analysis on the modal control influences of the actu-
ators shows that: two force actuators on the Reflector in x and y
directions, respectively, are most effective for controlling modes 1 and 2;
three moment actuators also on the Reflector about the x, y, and z
(i.e., roll, pitch, and yaw) axes, respectively, are most appropriate for
controlling modes 3, 4, and 5.

7.3.3 For quick effective suppression of the excessive vibrations in the
SCOLE configuration excited by the time-minimized BPB slew maneuver, it is
more appropriate to design the modal dashpots into separate parts than to
lumping up all the 5 most important modes to be controlled by all the five
actuators together. High gains not only do not create spillover and
interaction problems as uaual but rather make the resulting modal dash-
pots truly powerful and effective for quick suppression of excessive vibra-
tions.

7.4 In general, modal dashpots when properly and carefully designed, can add
desirable amount of active damping to modeled (or "controlled”) modes. Unmo-
deled modes can also receive some concomitant active damping, as a benefit of
spillover to complement their inherent damping.
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8. RECOMMENDATIONS

We recommend that:

1. the two-stage approach be accepted as a promising one, and included in Part
Two of the Design Challenge, for validation using the hardware SCOLE labora-
tory facility and for comparison with other approaches, and

2. theoretical and simulation studies on the two-stage approach be continued
using the mathematical models of both the orbital and the laboratory SCOLE
configurations for further development of the technology.

8.1 Careful scientific studies have been successfully conducted on the two-
stage approach to rapid pointing and vibration control of the flexible orbital
SCOLE configuration, and the results have been very encouraging. Now that the
physical SCOLE labortory facility is operational, we recommend that the
design techniques developed and the technical knowledge gained on the two-
stage approach be translated to the tethered laboratory SCOLE configuration
and be tested and validated by the experimental apparatus. Specifically:

(1) Design a rapid time-minimize bang-pause-bang line-of-sight pointing slew
maneuver (Stage 1), and a fast effective modal-dashpot type of vibration
controller (Stage 2), using the mathematical model of the tethered confi-
guration and the actuators and sensors actually available on the labora-
tory article. Test the designs on the SCOLE facility in real time.

(2) Then, conduct a comprehensive sequence of experimental evaluations similar
to Steps (a) through (e) below.

8.2 To further develop the technology associated with the promising pratical
two-stage approach and to gain additional technical knowledge, we recommend
that studies be conducted on the use of MD-augmented LQG/LTR design of
vibration control for attaining the specified LOS pointing accuracy. We also
recommend that the 1limit on the applied force at the Reflector of the
orbital SCOLE configuration be lowered by one order of magnitude from 800 1b
to between 100 and 200 1lb, or alternately between 20 and 30 1lb, in each direc-
tion.

Specifically, we recommend that:

(1) a series of design, simulation, study and evaluation be carried out on two
representative cases,

(2) the total time required from the beginning of the LOS pointing slew man-
euver to the end of stabilization with the desired 0.02° precision be deter-
mined for each case, and

(3) a trade-off study be conducted.
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Case 1. Limit set at 150 1b*

(a)

(b)

(c)

()

(e)

Use a Stage 1 design similar to the one described in Section 3.2.2 for the
time-minimized pointing slew maneuver. Simulate such a BB slew maneuver on
the 3-dimensional nonlinear rigid body dynamics of the SCOLE configuration
first; evaluate the LOS accuracy, and assess the effects of nonzero pro-
ducts of inertia during the rapid maneuver; compare the results with BPB
slew maueuver with the 800-1b limit.

Then simulate this slew maneuver on the flexible—-body dynamics of the
configuration as if it were a time-varying disturbance, and analyze the
vibrations thus excited.

Design a similar high-~power modal-dashpot type of velocity output feedback
control (following the same design proceedure as in Section 5). Such a
vibration control design is to be used, as the first part of Stage 2 for
suppressing the (moderately) excited vibrations quickly and effectively to
some desirable low levels.

Design a "low-power” modal dashpot (MD) type of velocity output feedback
control first. Augment the SCOLE configuration with the resulting modal
dashpot design. Then design a LQG/LTR type of optimal state feedback con-
trol. Such a LQG/LTR/MD control design is to be used as the second part
of Stage 2 for continuing on suppressing the vibrations quickly to the
desired LOS pointing accuracy of 0.02°. All force and moment actuators,
including the two proof-mass actuators, are to be used in both the MD and
the LQG/LTR/MD designs.

Simulate the entire Stage 2 design on the SCOLE flexible-body dynamics and
evaluate the vibration control performance numerically.

Integrate the Stage-1 and Stage-2 designs (for a continuous operation of
both pointing slew and vibration control), simulate their application on the
coupled SCOLE dynamics (i.e., flexible-body dynamics kinematically coupled
with rigid-body dynamics); evaluate the total LOS pointing and vibration
control performance and determine the total time required for achieving

the desired precision.

Case 2. Limit set at 25 1b

Use the same Stage 1 design as described in Section 3.2.3, instead of Sec-
tion 3.2.2, for the time-minimized pointing slew maneuver. Conduct all the
corresponding sequence of design, simulation, and evaluation as Case 1

except step (b).

* In the laboratory SCOLE configuration, the equivalent torque the thrusters on
the Reflector can generate is about two times the torque producible by the CMG
on the Shuttle. For the same ratio, the applied force on the Reflector of the

orbital SCOLE configuration is approximately 160 1b.
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